Trigonometric Identities and Formulas

Notes: sin2A = (sin A)2

Basic
tan-1 = arctan sin-1 = arcsin cos-1 = arccos


Reciprocal Identities
sin A =
1
csc A
csc A =
1
sin A
cos A =
1
sec A
sec A =
1
cos A
tan A =
1
cot A
cot A =
1
tan A


Quotient Identities
tan A =
sin A
cos A
cot A =
cos A
sin A


Pythagorean Identities
sin 2A + cos 2A = 1 1 + tan 2A = sec 2A 1 + cot 2A = csc 2A


Cofunction Identities
sin (
π
2
A) = cos A
tan (
π
2
A) = cot A
sec (
π
2
A) = csc A
cos (
π
2
A) = sin A
cot (
π
2
A) = tan A
csc (
π
2
A) = sec A


Negative Angle Identities (or Even and Odd Identities)
The cosine and secant functions are even.
cos(-A) = cos A , even function sec(-A) = sec A , even function

The sine, cosecant, tangent, and cotangent functions are odd.
sin(-A) = -sin A , odd function csc(-A) = -csc A , odd function tan(-A) = -tan A , odd function cot(-A) = -cot A , odd function


Addition Formulas (or Sum and Difference Formulas)
sin(A + B) = (sinA)(cosB) + (cosA)(sinB) sin(AB) = (sinA)(cosB) – (cosA)(sinB)
cos(A + B) = (cosA)(cosB) – (sinA)(sinB) cos(AB) = (cosA)(cosB) + (sinA)(sinB)
tan(A + B) =
tanA + tanB
1 – (tanA)(tanB)
tan(AB) =
tanA − tanB
1 + (tanA)(tanB)
cot(A + B) =
(cotA)(cotB) − 1
cotA + cotB
cot(AB) =
(cotA)(cotB) + 1
cotA − cotB


Double Angle Formulas
sin(2A) = (2)(sinA)(cosA) cos(2A) = cos2 A – sin2 A = 2 cos2 A – 1 = 1 – 2 sin2 A
tan(2A) =
2 tanA
1 – tan2 A


Half Angle Formulas
sin
A
2
 =  ±
1 – cos A
2
cos
A
2
 =  ±
1 + cos A
2
tan
A
2
 =  ±
1 – cos A
1 + cos A
  =  
1 − cosA
sin A
  =  
sinA
1 + cos A


Product Formulas
(2)(sinA)(cosB) = sin(A + B) + sin(A – B)
(2)(cosA)(cosB) = cos(A + B) + cos(A – B)
(2)(cosA)(sinB) = sin(A + B) – sin(A – B)
(2)(sinA)(sinB) = cos (A – B) – cos(A + B)

Factoring Formulas
sin A + sin B = 2 cos[(A – B)/2] sin[(A + B)/2]
sin A – sin B = 2 cos[(A + B)/2] sin[(A – B)/2]
cos A + cos B = 2 cos[(A + B)/2] cos[(A – B)/2]
cos A – cos B = -2 sin[(A + B)/2] sin[(A – B)/2]

Trigonometric Functions of Acute Angles
sin X = opp / hyp = a / c , csc X = hyp / opp = c / a
tan X = opp / adj = a / b , cot X = adj / opp = b / a
cos X = adj / hyp = b / c , sec X = hyp / adj = c / b ,

Trigonometric Functions of Arbitrary Angles
sin X = b / r , csc X = r / b
tan X = b / a , cot X = a / b
cos X = a / r , sec X = r / a

Sine and Cosine Laws in Triangles
In any triangle we have:
1 - The sine law
sin A / a = sin B / b = sin C / c
2 - The cosine laws
a2 = b2 + c2 - 2 b c cos A
b2 = a2 + c2 - 2 a c cos B
c2 = a2 + b2 - 2 a b cos C

Sum to Product Formulas
cosX + cosY = 2cos[ (X + Y) / 2 ] cos[ (X – Y) / 2 ]
sinX + sinY = 2sin[ (X + Y) / 2 ] cos[ (X – Y) / 2 ]

Difference to Product Formulas
cosX – cosY = - 2sin[ (X + Y) / 2 ] sin[ (X – Y) / 2 ]
sinX – sinY = 2cos[ (X + Y) / 2 ] sin[ (X – Y) / 2 ]

Product to Sum/Difference Formulas
cosX cosY = (1/2) [ cos (X – Y) + cos (X + Y) ]
sinX cosY = (1/2) [ sin (X + Y) + sin (X – Y) ]
cosX sinY = (1/2) [ sin (X + Y) – sin[ (X – Y) ]
sinX sinY = (1/2) [ cos (X – Y) – cos (X + Y) ]

Difference of Squares Formulas
sin 2X – sin 2Y = sin(X + Y)sin(X - Y)
cos 2X – cos 2Y = - sin(X + Y)sin(X - Y)
cos 2X – sin 2Y = cos(X + Y)cos(X - Y)

Multiple Angle Formulas
sin(3X) = 3sinX - 4sin 3X
cos(3X) = 4cos 3X - 3cosX
sin(4X) = 4sinXcosX – 8sin 3XcosX
cos(4X) = 8cos 4X - 8cos 2X + 1

Power Reducing Formulas
sin 2A = 1/2 – (1/2)cos(2A)
cos 2A = 1/2 + (1/2)cos(2A)
sin 3A = (3/4)sinA – (1/4)sin(3A)
cos 3A = (3/4)cosA + (1/4)cos(3A)
sin 4A = (3/8) – (1/2)cos(2A) + (1/8)cos(4A)
cos 4A = (3/8) + (1/2)cos(2A) + (1/8)cos(4A)
sin 5A = (5/8)sinA – (5/16)sin(3A) + (1/16)sin(5A)
cos 5A = (5/8)cosA + (5/16)cos(3A) + (1/16)cos(5A)
sin 6A = 5/16 – (15/32)cos(2A) + (6/32)cos(4A) - (1/32)cos(6A)
cos 6A = 5/16 + (15/32)cos(2A) + (6/32)cos(4A) + (1/32)cos(6A)

Trigonometric Functions Periodicity
sin (X + 2π) = sin X , period 2π
cos (X + 2π) = cos X , period 2π
sec (X + 2π) = sec X , period 2π
csc (X + 2π) = csc X , period 2π
tan (X + π) = tan X , period π
cot (X + π) = cot X , period π